Thursday 20 November 2014

Faktor-Faktor yang Mempengaruhi Pertumbuhan Mikroba

a. Suhu

1. Suhu pertumbuhan mikroba

Pertumbuhan mikrobia memerlukan kisaran suhu tertentu. Kisaran suhu pertumbuhan dibagi menjadi suhu minimum, suhu optimum, dan suhu maksimum. Suhu minimum adalah suhu terendah tetapi mikrobia masih dapat hidup. Suhu optimum adalah suhu paling baik untuk pertumbuhan mikrobia. Suhu maksimum adalah suhu tertinggi untuk kehidupan mikrobia.

Berdasarkan kisaran suhu pertumbuhannya, mikrobia dapat dikelompokkan menjadi mikrobia psikrofil (kriofil), mesofil, dan termofil. Psikrofil adalah kelompok mikrobia yang dapat tumbuh pada suhu 0-30 oC dengan suhu optimum sekitar 15 oC  Mesofil adalah kelompok mikrobia pada umumnya, mempunyai suhu minimum 15 0C suhu optimum 25-37 oC dan suhu maksimum 45-55 oC  Mikrobia yang tahan hidup pada suhu tinggi dikelompokkan dalam mikrobia termofil. Mikrobia ini mempunyai membran sel yang mengandung lipida jenuh, sehingga titik didihnya tinggi. Selain itu dapat memproduksi protein termasuk enzim yang tidak terdenaturasi pada suhu tinggi. Di dalam DNA-nya mengandung guanin dan sitosin dalam jumlah yang relatif besar, sehingga molekul DNA tetap stabil pada suhu tinggi.

Kelompok ini mempunyai suhu minimum 40 oC  optimum pada suhu 55-60 oC dan suhu maksimum untuk pertumbuhannya 75 oC  Untuk mikrobia yang tidak tumbuh dibawah suhu 30 oC dan mempunyai suhu pertumbuhan optimum pada 60 oC  dikelompokkan kedalam mikrobia termofil obligat. Untuk mikrobia termofil yang dapat tumbuh dibawah suhu 30 oC  dimasukkan kelompok mikrobia termofil fakultatif. Bakteri yang hidup di dalam tanah dan air, umumnya bersifat mesofil, tetapi ada juga yang dapat hidup diatas 50 oC (termotoleran). Contoh bakteri termotoleran adalah Methylococcus capsulatus. Contoh bakteri termofil adalah Bacillus, Clostridium, Sulfolobus, dan bakteri pereduksi sulfat/sulfur. Bakteri yang hidup di laut (fototrof) dan bakteri besi (Gallionella) termasuk bakteri psikrofil.

Apabila mikroba dihadapkan pada suhu tinggi diatas suhu maksimum, akan memberikan beberapa macam reaksi.
  1. Titik kematian thermal, adalah suhu yang dapat memetikan spesies mikrobia dalam waktu 10 menit pada kondisi tertentu. 
  2. Waktu kematian thermal, adalah waktu yang diperlukan untuk membunuh suatu spesies mikrobia pada suatu suhu yang tetap. Faktor-faktor yang mempengaruhi titik kematian thermal ialah waktu, suhu, kelembaban, spora, umur mikrobia, pH dan komposisi medium.
2. Suhu rendah

Apabila mikrobia dihadapkan pada suhu rendah dapat menyebabkan gangguan metabolisme. Skibat-akibatnya adalah :
  1. Cold shock, adalah penurunan suhu yang tiba-tiba menyebabkan kematian bakteri, terutama pada bakteri muda atau pada fase logaritmik, 
  2. Pembekuan (freezing), adalah rusaknya sel dengan adanya kristal es di dalam air intraseluler, 
  3. Lyofilisasi, adalah proses pendinginan dibawah titik beku dalam keadaan vakum secara bertingkat. Proses ini dapat digunakan untuk mengawetkan mikrobia karena air protoplasma langsung diuapkan tanpa melalui fase cair (sublimasi).
b. Kandungan air (pengeringan)

Setiap mikrobia memerlukan kandungan air bebas tertentu untuk hidupnya, biasanya diukur dengan parameter aw (water activity) atau kelembaban relatif. Mikrobia umumnya dapat tumbuh pada aw 0,998-0,6. bakteri umumnya memerlukan aw 0,90-0,999. Mikrobia yang osmotoleran dapat hidup pada aw terendah (0,6) misalnya khamir Saccharomyces rouxii.Aspergillus glaucus dan jamur benang lain dapat tumbuh pada aw 0,8. Bakteri umumnya memerlukan aw atau kelembaban tinggi lebih dari 0,98, tetapi bakteri halofil hanya memerlukan aw 0,75. Mikrobia yang tahan kekeringan adalah yang dapat membentuk spora, konidia atau dapat membentuk kista. 

c. Tekanan Osmosis

Tekanan osmosis sangat erat hubungannya dengan kandungan air. Apabila mikrobia diletakkan pada larutan hipertonis, maka selnya akan mengalami plasmolisis, yaitu terkelupasnya membran sitoplasma dari dinding sel akibat mengkerutnya sitoplasma. Apabila diletakkan pada larutan hipotonis, maka sel mikrobia akan mengalami plasmoptisa, yaitu pecahnya sel karena cairan masuk ke dalam sel, sel membengkak dan akhirnya pecah. Berdasarkan tekanan osmosis yang diperlukan mikrobia dapat dikelompokkan menjadi:
  1. Mikrobia Osmofil : tumbuh pada kadar gula tinggi, contoh beberapa jenis khamir, mampu tumbuh pada larutan gula dengan konsentrasi lebih dari 65 % wt/wt (aw = 0,94).
  2. Mikrobia Halodurik : tahan (tidak mati) tetapi tidak dapat tumbuh pada kadar garam tinggi (30 %).
  3. Mikrobia Halofil : dapat tumbuh pada kadar garam yang tinggi, contoh: bakteri yang termasuk Archaebacterium, misalnya Halobacterium.
d. Buffer

Buffer merupakan campuran garam monobasik dan dibasik, contoh adalah buffer fosfat anorganik dapat mempertahankan pH diatas 7,2. Cara kerja buffer adalah garam dibasik akan mengabsorbsi ion H+ dan garam monobasik akan bereaksi dengan ion OH-.

Untuk menumbuhkan mikrobia pada media, memerlukan pH yang konstan, terutama pada mikrobia yang dapat menghasilkan asam oleh karena itu buffer diperlukan untuk mempertahankan pH pada kisaran tertentu yang diperlukan untuk pertumbuhan mikroba.

e. Ion-ion lain

Logam berat seperti Hg, Ag, Cu, Au, dan Pb pada kadar rendah dapat bersifat meracuni (toksis) karena mempunyai daya oligodinamik, yaitu daya bunuh logam berat pada kadar rendah. Ion-ion lain seperti ion sulfat, tartrat, klorida, nitrat, dan benzoat dapat mengurangi pertumbuhan mikrobia tertentu dan sering digunakan dalam pengawetan makanan, senyawa lain misalnya asam benzoat, asam asetat, dan asam sorbat.

f. Listrik

Bila aliran listrik diberikan pada medium tumbuh mikroba akan menyebabkan:
  1. Terjadinya elektrolisis pada medium pertumbuhan.
  2. Menghasilkan panas yang dapat mempengaruhi pertumbuhan mikroba, sel mikroba dalam suspensi akan mengalami elektroforesis.
  3. Menyebabkan terjadinya shock karena tekanan hidrolik listrik, kematian mikroba akibat shock terutama disebabkan oleh oksidasi.
  4. Adanya radikal ion dari ionisasi radiasi dan terbentuknya ion logam dari elektroda juga menyebabkan kematian mikroba.
g. Radiasi

Bila mikrobia menerima paparan radiasi tertentu:
  1. Menyebabkan ionisasi molekul-molekul di dalam protoplasma.
  2. Merusak mikrobia yang tidak mempunyai pigmen fotosintesis.
  3. Cahaya mempunyai pengaruh germisida.
  4. Sinar X (0,005-1,0 Å , sinar ultra violet (4000-2950 Å , dan sinar radiasi lainnya dapat membunuh mikroba.
  5. Apabila tingkat iradiasi yang diterima sel mikrobia rendah, maka dapat menyebabkan terjadinya mutasi pada mikroba.
h. Tegangan Muka
  1. Tegangan muka mempengaruhi cairan sehingga permukaan cairan tersebut menyerupai membran yang elastis.
  2. Perubahan tegangan muka dinding sel akan mempengaruhi pula permukaan protoplasma, akibatnya mempengaruhi pertumbuhan dan morfologi mikroba.
  3. Zat-zat seperti sabun, deterjen, dan zat-zat pembasah (surfaktan) dapat mengurangi tegangan muka cairan/larutan.
  4. Umumnya mikroba cocok pada tegangan muka yang relatif tinggi
i. Tekanan Hidrostatik
  1. Umumnya tekanan 1 – 400 atm tidak mempengaruhi atau hanya sedikit mempengaruhi metabolisme dan pertumbuhan mikroba, tekanan hidrostatik yang lebih tinggi akan menghambat atau menghentikan pertumbuhan, karena dapat menghambat sintesis RNA, DNA, dan protein, serta mengganggu fungsi transport membran sel maupun mengurangi aktivitas berbagai macam enzim.
  2. Tekanan diatas 100.000 pound/inchi2 menyebabkan denaturasi protein, tetapi ada mikrobia yang tahan hidup pada tekanan tinggi (mikrobia barotoleran), dan yang tumbuh optimal pada tekanan tinggi sampai 16.000 pound/inchi2 (mikroba barofilik), umumnya mikroba laut adalah barofilik atau barotoleran, contoh: bakteri Spirillum.
j. Getaran

Getaran mekanik dapat merusak dinding sel dan membran sel mikroba, dipakai untuk memperoleh ekstrak sel mikroba dengan cara menggerus sel-sel dengan menggunakan abrasif atau dengan cara pembekuan kemudian dicairkan berulang kali atau dengan getaran suara 100-10.000 kali/detik juga dapat digunakan untuk memecah sel mikroba.

sumber : http://perpustakaancyber.blogspot.com/2012/11/pertumbuhan-mikroba-kurva-laju-lag-eksponensial-stasioner-bakteri-pengaruh-kecepatan.html

Teknik mengukur pertumbuhan populasi mikroba

a. Berdasarkan jumlah sel

1. Metode langsung secara mikroskopis (Total count)

Ada beberapa cara perhitungan secara langsung, antara lain adalah dengan membuat preparat dari suatu bahan (preparat sederhana diwarnai atau tidak diwarnai) dan penggunaan ruang hitung (counting chamber). Enumerasi mikroba dapat dilakukan secara langsung yaitu dengan menghitung jumlahnya tanpa ditumbuhkan terlebih dahulu dalam suatu medium, dalam teknik ini semua sel mikroba baik yang hidup maupun yang mati akan terhitung. Untuk melakukan renumerasi mikroba dalam suatu bahan seringkali diperlukan pengenceran bertingkat.

a). Breed slide method

Pada metode ini tidak dibedakan sel yang hidup dan sel mati. Penghitungan dilakukan secara langsung pada setiap bidang pandang mikroskop. Sampel berupa cairan disebar (kira-kira 0,01 mL) pada microscope slide. Setelah dilakukan pewarnaan kemudian dilakukan penghitungan pada setiap bidang pandang mikroskop.

b). Petroff-Hauser chamber atau Haemositometer

Penghitungan secara langsung dapat dilakukan secara mikroskopis yaitu dengan menghitung jumlah bakteri dalam satuan isi yang sangat kecil. Alat yang digunakan adalah Petroff-Hauser Chamber atau Haemocytometer. Jumlah cairan yang terdapat antara coverglass dan alat ini mempunyai volume tertentu sehingga satuan isi yang terdapat dalam satu bujur sangkar juga tertentu. Dengan membuat preparat dari Suatu bahan (preparat sederhana diwarnai atau tidak diwarnai) dan penggunaan ruang hitung (counting chamber).

Ruang hitung terdiri dari 9 kotak besar dengan luas 1 mm². Satu kotak besar di tengah, dibagi menjadi 25 kotak sedang dengan panjang 0,2 mm. Satu kotak sedang dibagi lagi menjadi 16 kotak kecil. Dengan demikian satu kotak besar tersebut berisi 400 kotak kecil. Tebal dari ruang hitung ini adalah 0,1 mm. Sel nakteri yang tersuspensi akan memenuhi volume ruang hitung tersebut sehingga jumlah bakteri per satuan volume dapat diketahui.

2. Metode tidak langsung (viable count)

Perhitungan cara tidak langsung hanya untuk mengetahui jumlah mikroorganisme pada suatu bahan yang masih hidup saja (viable count). Metode perhitungan secara tidak langsung yang didasarkan pada anggapan bahwa setiap sel yang dapat hidup akan berkembang menjadi satu koloni yang merupakan suatu indeks bagi jumlah organisme yang dapat hidup yang terdapat pada sampel. Cara ini adalah cara yang paling umum digunakan untuk menentukan jumlah mikroba yang masih hidup, berdasarkan jumlah koloni yang tumbuh. Teknik ini diawali dengan pengenceran sampel secara seri, dengan kelipatan 1 : 10. Masing-masing suspensi pengenceran ditanam dengan metode tuang (pour plate) atau sebar (spread plate). Bakteri akan bereproduksi pada medium agar dan membentuk koloni setelah 18-24 jam inkubasi. Untuk menghitung jumlah koloni dalam cawan petri dapat digunakan alat ’colony counter’ yang biasanya dilengkapi dengan pencatat elektronik.

a). Spread plate method

Metode sebar (spread plate) merupakan metode penghitungan mikrobia pada medium padat. Dalam metode spread plate ini, volume kultur yang disebar tidak lebih dari 0,1 ml pada agar plate dan diratakan menggunakan alat yang disebut glass spreader. Kemudian plate diinkubasi sampai terlihat koloni sehingga jumlah koloni mikrobia dapat dihitung.  Walaupun mikrobia tertanam dalam agar plate, namun hasilnya sama dengan metode pour plate.

b). Pour plate method

Metode pour plate adalah metode agar cair yang digunakan untuk inokulasi dalam petri dish. Volume kultur yang biasa digunakan 0,1-1,0 ml. Kultur mikrobia dimasukkan ke dalam petri dish menggunakan pipet steril, kemudian medium agar yang telah dilelehkan (± 45 oC  dituangkan ke dalam petri dish yang telah berisi kultur mikrobia. Selanjutnya dilakukan pemutaran petri dish agar kultur mikrobia dan medium agar bercampur dengan rata. Koloni mikrobia akan tumbuh dan tertanam di dalam medium, baik di permukaan atas maupun di bawah. Sehingga metode pour plate ini cocok untuk menumbuhkan mikrobia anaerob.

c). MPN method

MPN adalah suatu metode enumerasi mikroorganisme yang menggunakan data dari hasil pertumbuhan mikroorganisme pada medium cair spesifik dalam seri tabung yang ditanam dari sampel padat atau cair yang ditanam berdasarkan jumlah sampel atau diencerkan menurut tingkat seri tabungnya sehingga dihasilkan kisaran jumlah mikroorganisme yang diuji dalam nilai MPN/satuan volume atau massa sampel.

Prinsip utama metode ini adalah mengencerkan sampel sampai tingkat tertentu sehingga didapatkan konsentrasi mikroorganisme yang pas/sesuai dan jika ditanam dalam tabung menghasilkaan frekuensi pertumbuhan tabung positif “kadang-kadang tetapi tidak selalu”. Semakin besar jumlah sampel yang dimasukkan (semakin rendah pengenceran yang dilakukan) maka semakin “sering” tabung positif yang muncul. Semakin kecil jumlah sampel yang dimasukkan (semakin tinggi pengenceran yang dilakukan) maka semakin “jarang” tabung positif yang muncul. Jumlah sampel/pengenceran yang baik adalah yang menghasilkan tabung positif “kadang-kadang tetapi tidak selalu”. Semua tabung positif yang dihasilkan sangat tergantung dengan probabilitas sel yang terambil oleh pipet saat memasukkannya ke dalam media. Oleh karena itu homogenisasi sangat mempengaruhi metode ini. Frekuensi positif (ya) atau negatif (tidak) ini menggambarkan konsentrasi mikroorganisme pada sampel sebelum diencerkan.

Asumsi yang diterapkan dalam metode MPN adalah :
  1. Bakteri terdistribusi sempurna dalam sampel
  2. Sel bakteri terpisah-pisah secara individual, tidak dalam bentuk rantai atau kumpulan (bakteri coliform termasuk E. coli terpisah sempurna tiap selnya dan tidak membentuk rantai).
  3. Media yang dipilih telah sesuai untuk pertumbuhan bakteri target dalam suhu dan waktu inkubasi tertentu sehingga minimal satu sel hidup mampu menghasilkan tabung positif selama masa inkubasi tersebut.
  4. Jumlah yang didapatkan menggambarkan bakteri yang hidup (viable) saja. Sel yang terluka dan tidak mampu menghasilkan tabung positif tidak akan terdeteksi.
  5. MPN dinilai dari perkiraan unit tumbuh (Growth Unit / GU) seperti CFU (Colony Forming Unit), bukan dari sel individu. Meskipun begitu baik nilai CFU atau MPN dapat menggambarkan seberapa banyak sel individu yang tersebar dalam sampel. Metode MPN dirancang dan lebih cocok untuk diterapkan pada sampel yang memiliki konsentrasi <100/g atau ml. Oleh karena itu nilai MPN dari sampel yang memiliki populasi mikroorganisme yang tinggi umumnya tidak begitu menggambarkan jumlah mikroorganisme yang sebenarnya. Jika jumlah kombinasi tabung positif tidak sesuai dengan tabel maka sampel harus diuji ulang. Semakin banyak seri tabung maka semakin tinggi akurasinya tetapi juga akan mempertinggi biaya analisa

sumber : http://perpustakaancyber.blogspot.com/2012/11/pertumbuhan-mikroba-kurva-laju-lag-eksponensial-stasioner-bakteri-pengaruh-kecepatan.html

Kinetika Pertumbuhan Mikroba dalam Batch Culture


Penumbuhan mikroba dalam sistem batch culture merupakan sistem kultur tertutup (menggunakan tabung reaksi atau flask) tanpa adanya penambahan medium baru ke dalam kultur. Mikrobia dalam sistem tertutup mengalami 4 fase pertumbuhan, secara berurutan meliputi fase lag, fase eksponensial, fase stasioner dan fase kematian. Pertumbuhan mikrobia dalam sistem tertutup menyebabkan fase eksponensial mikrobia sangat terbatas (Brock, 2012). 


a. Fase Lag

Fase lag merupakan waktu yang dibutuhkan mikrobia untuk tumbuh beradaptasi di dalam medium baru. Adaptasi mikrobia dilakukan untuk mensintesis enzim-enzim yang dibutuhkan untuk pertumbuhan lebih lanjut. Pada fase lag terjadi pertambahan massa dan volume sel mikrobia. Panjang atau pendeknya interval fase lag tergantung pada jenis inokulum mikrobia, medium yang sedikit nutrisi dan kondisi pertumbuhan mikrobia saat diinokulasikan.

Ada 3 alasan mikrobia kembali ke fase lag, yaitu:
  1. Inokulum hidup yang digunakan berasal dari kultur medium lama (saat mikrobia dalam fase stasioner) dipindahkan ke dalam komposisi medium baru yang sama. Keadaan mikrobia kembali ke fase lag karena mikrobia sudah tidak memiliki metabolit penting untuk menunjang kehidupannya. Oleh karena itu, mikrobia membutuhkan rentang waktu untuk melakukan biosintesis kembali. Mikrobia yang diinokulasikan mengalami kerusakan sel (tidak mati) akibat perubahan suhu, radiasi atau bahan kimia toxic. Fase lag dibutuhkan mikrobia untuk memperbaiki kerusakan sel nya.
  2. Populasi mikrobia yang diinokulasikan berasal dari medium kaya nutrisi dipindahkan ke dalam medium yang sedikit nutrisinya. Mikrobia membutuhkan waktu untuk menghasilkan enzim baru yang digunakan untuk mensintesis metabolit essensial.
  3. Populasi mikrobia tidak akan mengalami fase lag jika inokulum yang digunakan berasal dari populasi mikrobia yang mengalami pertumbuhan fase eksponensial dan ditumbuhakan pada kondisi medium yang sama (Brock, 2012).
b. Fase Eksponensial

Pada fase eksponensial, populasi mikrobia mengalami pembelahan paling tinggi dan konstan dalam waktu generasi yang pendek. Waktu generasi mikrobia merupakan waktu yang dibutuhkan sel mikrobia untuk membelah menjadi 2 sel. Setiap sel mikrobia akan membelah 2x lipat sehingga peningkatan jumlah populasi selalu 2n, n adalah jumlah generasi. Pertambahan jumlah sel dalam populasi disebut sebagai pertumbuhan mikrobia.

c. Fase Stasioner

Mikrobia mengalami pertumbuhan yang terbatas dan konstan selama fase stasioner. Pada fase stasioner, pembelahan sel yang terjadi sangat lambat. Jumlah pembelahan sel dengan sel yang mati seimbang, sehingga jumlah sel relatif konstan (pertumbuhan 0). Pertambahan jumlah sel yang sebanding dengan kematian sel disebut dengan fenomena pertumbuhan kriptik.

Pada fase ini, sel mikroba tetap aktif melakukan metabolisme energi dan proses biosintesis lainnya. Metabolit sekunder banyak dihasilkan mikrobia pada fase ini. Fase stasioner terjadi karena beberapa alasan yaitu:
  1. Terbatasnya nutrisi essensial dalam kultur yang mulai berkurang,
  2. Bagi organisme aerobik, ketersediaan O2 dalam medium mulai berkurang,
  3. Banyaknya sisa metabolisme yang tertimbun dalam medium kultur sehingga pertumbuhan mikroba terhambat (Brock, 2012 dan  Prescott, 1999).
4. Fase Kematian

Fase kematian terjadi jika terjadi perubahan lingkungan menjadi tidak menguntungkan, seperti berkurangnya nutrisi essensial dalam medium dan meningkatnya akumulasi zat toksik dalam medium. Grafik fase kematian seperti grafik fase eksponensial yaitu logaritmik (kematian sel tiap jam adalah konstan). Sel mikrobia yang mati akan mengalami lisis (Prescott, 1999).

Kenapa pada perhitungan dengan menggunakan colony counter hanya jumlah 30-300 koloni saja yang dapat dihitung ?

Kenapa pada perhitungan dengan menggunakan colony counter hanya jumlah 30-300 koloni saja yang dapat dihitung ?

Jawaban :

Karena jumlah tersebut merupakan sampel yang representative. Kurang fari 30 koloni dianggap tidak representative ( terlalu sedikit organisme ), lebih dari 300 koloni juga sama dinggap tidak representative karena koloni yang terlalu padat akan menghasilkan pertumbuhan bakteri yang jelek dan beberapa koloni mungkin berkembang dalam ukuran yang tidak terlihat.

BAB I PENDAHULUAN 1.1. Laatar Belakang Kualitas air adalah istilah yang menggambarkan kesesuaian atau kecocokan air untuk pengg...